Anatomy and Pathophysiology of the Lumbar Spine

Mechanical Principles
- Provides axial rigidity to the abdominal portion of the trunk
- Separates the thorax from the pelvis
- Enables certain movements between the thorax and the pelvis
- Affords an origin for parts of the abdominal muscles

Rigidity
- Axial rigidity is a cardinal feature
- Allows the human to walk upright
- Rigidity is essential, but mobility is also required
- A single bone would not allow for mobility – similarly neither does spinal fusion

Separation
- The height of the vertebral bodies and the inter vertebral discs provide separation of the thorax and the pelvis
- Without this separation the thorax and pelvis would clash with simple movements

Compression
- Body weight and gravity provide compressive forces on the lumbar spine
- Lumbar vertebrae are designed to withstand axial compression loading
- Trabeculae design adds to strength

Mobility
- Joints provide movement
- Principle joints are between vertebral bodies
- Secondary joints are facet (xygopophyseal) joints
- Cartilaginous joints either side of the vertebral bodies
Intervertebral Disc
- Acts as a shock absorber between each vertebral body
- Cartilaginous outer coat provides strength and rigidity
- Each disc is approximately 10mm in height
- Discs ‘shrink’ during the day and are replenished at night
- Disc height does not change with age

Ligaments of the Lumbar Spine
- **Ligamentum flavum** – connects the lower end of the internal surface of one lamina to the upper end of the external surface of the lamina below
- Extensible ligament which stretches when the lumbar spine flexes
- Contains elastin fibers to recoil when extension is regained

Ligaments of the Lumbar Spine
- **Intertransverse ligament** – connects the transverse processes but are too thin to truly act as ligaments
- More like a membrane than a ligament

Ligaments of the Lumbar Spine
- **Interspinous Ligaments** – dorsal portion is ligamentous in nature, the ventral portion constitutes tendinous fibers from the erector spinae.
- **Supraspinous Ligament** – not a ligament. This is really a collection of tendinous fibers from various muscles. It is lacking below L3

Ligaments of the Lumbar Spine
- **Posterior Longitudinal Ligament** – covers the floor of the vertebral canal
- Contains short fibers that span consecutive vertebrae
- Contains longer fibers that can span multiple vertebrae

Ligaments of the Lumbar Spine
- **Anterior Longitudinal Ligament** – covers anterior aspects of the vertebral bodies and discs
- Many fibers are not ligamentous but constitute the prolonged tendons of the crura of the diaphragm
Ligaments of the Lumbar Spine

- **Iliolumbar Ligament** – strongest ligament attached to the lumbar spine
- Arises from the tip of the and borders of the transverse process of the 5th lumbar vertebrae and passes backwards and laterally to the ilium
- They anchor the 5th lumbar vertebra on the pelvic girdle – prevent it from sliding forward

Facet (Zygopophyseal) Joints

- Designed to block axial rotation and forward sliding of the lumbar vertebrae
- Prevent the discs from excessive torsion
- Joint faces are set in such a way that they prevent excessive motion through bony interfacing

The Sacrum

- Block of bone that supports the lumbar vertebral column
- Transmits forces between the vertebral column and the lower limbs
- Consists of 5 segments that are fused together

Sacroiliac Joint

- The great debate
- Does it move or does it not?
- You will meet those who believe it does and then you will meet me
- Let me taint your opinion on the sacroiliac joint

Sacroiliac Joint

- Mobility of the SI joint - ≤2°
- No muscles act to produce active movement on the SI joint
- SI joint is designed to allow a little flex in the pelvis during ambulation
- Strong ligaments surround it
- Undulations on the articular surfaces interlock the sacrum and the ilium

Ligaments of the SI joint

- **Interosseus Sacroiliac ligament** – short, thick ligament arising from the sacrum and inserts into opposing area on the ilium
- Tension in this ligament keeps the sacrum and ilium compressed together
- Long and short posterior SI ligaments connect the ilium to the posterior surface of the sacrum
Ligaments of the SI joint
- Anteriorly the capsule is thickened to form the anterior SI ligament
- Prevents the anterior edges of the sacrum and ilium from separating
- Sacrospinous and sacrotuberous ligaments anchor the sacrum to the spine of the ischium and the ischial tuberosity
- They prevent forward nutation of the sacrum

Muscles of the Lumbar Spine
- There are three distinct muscle groups
 - Intertransverse muscles
 - Anterior muscles
 - Posterior muscles

Intertransverse Muscles
- Several distinct small muscles attached to the transverse processes
 - Intertransversarii mediales – tiny slips passing from an accessory process to a mamillary process below
 - Intertransversarii laterales dorsales – pass from an accessory process to the transverse process below
- Involved in proprioception - lots of muscle spindles present

Anterolateral Muscles
- Psoas Major – covers the lateral aspects of the lumbar vertebral bodies and proximal quarter of the anterior aspects of the transverse processes
- Fibers arise from transverse processes, IV discs, margins of vertebra adjacent to discs
- Attach at the lesser trochanter on the femur

Anterolateral Muscles
- Acts to flex the hip, with the lumbar spine providing the base of support
- No real movement at the lumbar spine occurs with psoas activity – due to the proximity of the fibers to the axis of movement
- May exert very large compressive forces on the IV discs – during hip flexion or sit-ups

Quadratus Lumborum
- Covers the anterior surfaces of the transverse processes
- Most fibers pass from the ilium and iliolumbar ligament to the 12th rib
- Joined by fibers from the transverse processes to the 12th rib
Quadratus Lumborum
- Primary action appears to be to brace the 12th rib in order to provide a steady base from which the lower fibers of the diaphragm can act.
- Additional fibers pass from the ilium to L1 – L4 transverse processes although these fibers are irregular differing from patient to patient.
- These fibers may have an action on the lumbar spine – lateral flexion or control of bending in the opposite direction.

Posterior Back Muscles
- **Interspinales** – thin rectangular sheets of fibers that connect apposing spinous processes.
- Too small to exert any true action on the lumbar spine.
- Believed to contribute to proprioception.

Other Posterior Back Muscles
- Three columns of muscle (med – lat)
 - Multifidus
 - Longissimus thoracis
 - Iliocostalis lumborum
- Two layers of muscle.

Multifidus
- Fibers are arranged in laminated bands with fibers from L1 covering those from L2 laterally and posteriorly – and so on.
- This allows multifidus to act on each spinous process individually and separately.
- Multidus is NOT a ROTATOR of the lumbar spine.
- Predominant action is to pull down on the spinous processes.

Longissimus Thoracic Pars
- Slender muscle that lies immediately lateral to multifidus.
- Fibers arise from tip of L1-4 accessory processes and converge to a common tendon – lumbar interosseus muscular aponeurosis.
Longissimus Thoracic Pars
- Inserts into the ilium just above and medial to the posterior superior iliac spine
- Action is to pull downwards and slightly backwards on the transverse processes – thereby extending the lumbar spine (or controlling flexion)
- Acting unilaterally these muscles act to control side flexion of the lumbar spine

Iliocostalis Lumborum Pars Lumborum
- Fibers arise from the tips of the L1-4 transverse processes
- Pass inferiorly as flat sheets in a laminated fashion
- Insert into the crest of the ilium distal to the PSIS
- Act to pull downwards and backwards on transverse processes – like LTpL

Longissimus Thoracis Pars Thoracis
- Series of muscle bellies that arise from thoracic transverse processes of T1-12
- Each muscle belly is approx 1-2cm wide and 9-12cm long
- Pass to the lumbar region where they are aggregated side-by-side to form the erector spinae aponeurosis

Longissimus Thoracis Pars Thoracis
- Attach to lumbar and sacral spinous processes and the posterior segment of the iliac crest
- Tendons from the highest thoracic levels insert into the L1 – and so on down the spine
- Fibers are arranged to extend the thorax in relation to the pelvis to control trunk flexion

Iliocostalis Lumborum Pars Thoracis
- Series of small overlapping muscle bellies located in the thoracic region
- Arise from the angles of the lower 8 ribs with a long caudal tendon extending to the lumbar region
- Tendons form lateral part of the erector spinae aponeurosis
- Extend the thorax on the pelvis or control forward or lateral flexion of the trunk

Erector Spinae Aponeurosis
- A broad, flat tendon that covers the lumbar region
- Fibers consist exclusively of the caudal tendons of the muscle bellies of:
 - Longissimus thoracis pars thoracis
 - Iliocostalis lumborum pars thoracis
- These tendons cover underlying muscles and do not attach to them
Thoracolumbar Fascia
- Muscles of the lumbar spine are enveloped in three layers of fascia
- The Anterior layer covers the quadratus lumborum
- The Middle layer (aponeurosis) arising from fibers of transversus abdominus
- The Posterior layer is more appropriately an aponeurosis of latissimus dorsi

Spinal Nerves
- Short nerves lying in the intervertebral foramina
- Each is a mixed nerve – sensory and motor
- Connected to the spinal cord by a dorsal and ventral root
- Lie obliquely in the foramen running downwards and laterally out of the foramen

Ventral Rami
- Supply structures in the ventral compartment of the lumbar region and the lower limb
- After leaving the foramen, they enter the substance of the psoas major and communicate with each other to form the lumbar plexus
- Deep branches of the plexus innervate the psoas and quadratus lumborum

Nerves of the Lumbar Plexus
- Iliohypogastric and ilioinguinal nerves
- Lateral cutaneous nerve of the thigh
- Genitofemoral nerve
- Femoral nerve
- Obturator nerve
- Lumbosacral trunk – provides fibers of the L4 and 5 spinal nerves to the sacral plexus

Dorsal Rami
- Tiny branches that leave the spinal nerves at the IV foramen and enter the posterior compartment of the lumbar region
- Divide into:
 - Lateral
 - Intermediate
 - medial branches
- Lateral branches innervate iliocostalis lumborum

Dorsal Rami
- Lateral branches from L1, 2, 3 also supply cutaneous branches to innervate skin over the upper and lateral regions of the buttock
- Intermediate branches supply the longissimus lumbarum pars lumbarum
- Medial branches send articular branches to the facet joints and end in the multifidus and interspinalis muscles – segmental distribution
Innervation of the Disc
- Each disc is supplied by multiple sources
- Anteriorly and laterally supplied by branches of the sympathetic trunks
- Posteriorly the annulus receives branches from a plexus which covers the floor of the vertebral canal – derived from the sinuvertebral nerves

Nutrition of the Disc
- IV discs have a very poor blood supply
- Limited to tiny vessels that arise from the external arteries supplying vertebral bodies
- Poor external blood supply = poor nutrition
- 50% comes through vertebral end plates by osmosis
- Nutrition is improved by movement

Any Questions?